Mark schemes

Q1.

(a) Trichlorofluoromethane No other names

(b) $CHFCI_2 + \bullet CI \rightarrow \bullet CFCI_2 + HCI$ Equations in either order

$$\bullet$$
CFCl₂ + Cl₂ \rightarrow CFCl₃ + \bullet Cl

Allow dot anywhere on each radical species Allow 1 mark for two equations with missing dots that are otherwise correct Ignore any arrows for electron movement

2

(c) $CFCI_3 \rightarrow \bullet CFCI_2 + \bullet CI$

Allow dot anywhere on each radical species Ignore any arrows for electron movement

1

(d) $O_3 + \bullet Cl \rightarrow \bullet OCl + O_2$

$$\bullet$$
OCl + O₃ \rightarrow 2 O₂ + \bullet Cl

Equations in either order

Allow dot anywhere on each radical species

Allow 1 mark for two equations with missing dots that are otherwise correct

(Accept alternative pair of equations for M2 (both needed for M2)

$$O_3 \rightarrow O + O_2$$

 $C/O \bullet + O \rightarrow C/\bullet + O_2$)

2

Absorbs/removes ultraviolet/UV radiation that is harmful/causes (skin) (e) cancer/causes (cell) mutations

> Answer must refer to removal of UV and idea of it being harmful/the harm it causes

Ignore stopping UV/blocking UV/preventing UV/protecting from UV

ignore reference to greenhouse effect/gases/absorption of IR/global warming

Q2.

(a)

M1 arrow from lone pair on O of OH- to the correct C

M2 arrow from the C-Br bond to the Br

All arrows are double-headed. Penalise one mark from the total if half headed arrows are used Do not penalise the "correct" use of "sticks" Penalise only once in mechanism for a line and two dots to show a bond Allow the minus sign to be anywhere on the OH—

ion

M2 penalise formal charges or incorrect partial

charges on C-Br bond

Allow SN1 mechanism with

M1 for breakage of C-Br bond

M2 for attack by OH− on correct carbocation

Max 1 of 2 marks for wrong organic reactant Ignore wrong organic product (if shown)

Extra arrows or incorrect covalent bonds:

Penalise the mark for breaking of C-Br bond for any extra arrows involving Br or covalent bond in NaBr in **M2**

Penalise the mark for attack for any extra arrows involving OH⁻ or covalent bond in NaOH in **M1 M2** could potentially score if an elimination mechanism is shown

- (b) М1 lodide ions are produced more rapidly than bromide ions or gradient (of iodide ions graph) is steeper
 - C-I is weaker than C-Br or
 - C-I has lower bond enthalpy than C-Br or C-I breaks more easily than C-Br

M2 Must compare the C-I and C-Br bonds specifically

Ignore references to bond length, size of atoms, shielding, electronegativity and polarity

Penalise idea that iodine is more reactive than bromine

1

Q3.

(a) H

$$H - C - C - C = C - C - C - H$$

Displayed structure of hex-3-ene (E or Z isomer)

Award 1 mark if correct molecules given in (a) and (b) but they are not displayed structures

(b)

<u>**Displayed**</u> formula of 2-methylpent-2-ene or 3,4-dimethylbut-2-ene

Allow molecules that are both chain and position isomers, eg 2-methylpent-1-ene, 3-methylpent-1-ene, 4-methylpent-1-ene, 3,3-dimethylbut-1-ene, 2,3-dimethylbut-1-ene, 2-ethylbut-1-ene

Award 1 mark if correct compounds given in part (a) and (b) but they are not displayed formulas

(c)

Skeletal formula

Award 1 mark if correct compounds given in part (c) and (d) but they are not skeletal formulas

(d)

Skeletal formula

Alternative answers:

Award 1 mark if correct compounds given in part (c) and (d) but they are not skeletal formulas

(e) M1 divide %s by relative atomic masses:

C
$$\frac{17.8}{12.0}$$
 = 1.48 H $\frac{3.0}{1.0}$ = 3.00 Br $\frac{79.2}{79.9}$ = 0.99

Allow ECF from **M1** to **M2** for a correct empirical formula for their working in **M1**

M2 (1.48 : 3.00 : 0.99 = 3 : 6 : 2) empirical formula = C₃H₆Br₂

Allow ECF from **M2** to **M3/4** for compounds that are saturated halogenoalkanes

M3,4 any 2 of:

- 1,1-dibromopropane
- 1,2-dibromopropane
- 1,3-dibromopropane
- 2,2-dibromopropane

2

1

1

1

Q4.

(a) M1 nucleophilic substitution

- M2 attack by NH₃: arrow from lone pair on N of NH₃ towards C of C-I bond
- M3 breaking of C-I bond: arrow from C-I bond to I
- M4 structure of intermediate
- **M5** loss of H⁺: arrow from N-H bond to N

Penalise **M3** for formal charge on C and / or I of C-I or incorrect partial charges on C-I; ignore other partial charges on uncharged atoms

M4 is independent

For **M5** there is no need to show attack by a second NH₃ molecule, but if it is shown, it must be correct (but, if the NH₃ is charged and has been penalised in **M2** (or **M3** for SN1), then do not penalise the same error again in **M5**); penalise removal of H⁺ by attack with I⁻

For SN2:

penalise **M2** for any additional arrow or charge on NH₃:

penalise **M3** for any additional arrow(s) to / from the I to / from anything else

If SN1 mechanism given (loss of I first followed by attack by NH₃):

M2 curly arrow from C-I bond to the I
M3 curly arrow from lone pair on N of NH₃ to
positive C atom of correct carbocation
penalise M2 for any additional arrow(s) to / from the
I to / from anything else
penalise M3 for any additional arrow or charge on
NH₃

1

(b) **M1** amount of 1-iodopropane = 169.9 (= 0.0515 mol)

Allow ECF from M1 to M2 based on an attempt to find the amount of 1-iodopropane in moles using the M_r

M2 number of molecules = $M1 \times 6.022 \times 10^{23}$

$$= 3.1(0) - 3.13(144) \times 10^{22}$$

M2 Answer should be standard form (and be at least 2sf)

2.3

(c) M1 amount of propylamine = 59.0(= 0.0390 mol)

AND amount of 1-iodopropane = $\frac{10.3}{169.9}$ (= 0.0606 mol) Allow ECF from M1 to M2

M2 % yield = $\frac{0.0390}{0.0606} \times 100 = 63.9 \text{ to } 64(.4 \%)$

Alternative method

M1 mass of 1-iodopropane = $\frac{10.3 \times 95.0}{169.9}$ (= 3.58 g) **M2** % yield = $\frac{2.3}{M1} \times 100$ = 63.9 to 64(.4 %)

Correct answer scores 2 marks

[9]

1

1

1

1

Q5.

(a) (for alkenes) elimination

Allow base elimination **Not** nucleophilic elimination

(for alcohols) nucleophilic substitution

(b) (Different molecules/compounds with the) same (molecular and) structural formula

Different spatial arrangement of atoms

Allow different spatial arrangement of bonds/groups

(c) \mathbf{A} = but-1-ene

Not butene

two groups/atoms/Hs the same on one of the C=C carbons

Allow two groups/atoms/Hs the same on first C

Not two groups the same on one side of C=C

Ignore references to no chiral carbon

Ignore 'priority' i.e. 2 groups with the same

priority... gets M2 for '2 groups the same...'

If wrong halogenoalkane used then max 2/3

M1 lone pair on O, negative charge (anywhere) and curly arrow from lone pair to H on carbon 1

Not if (covalent) NaOH / additional arrows to or from NaOH / additional arrows to or from Na+

M2 curly arrow from C(1)-H to C(1)-C(2) **M2** is standalone from **M1**

Allow ecf if H on carbon 3 attacked in **M1** for curly arrow from C(3)-H to C(2)-C(3)

Not as ecf if H on carbon 2 attacked in M1 for curly arrow from C(2)-H

1

1

1

1

M3 Curly arrow from C-Br to Br (mark is independent)

Not if any additional arrows / incorrect polarity or formal charges on C-Br

Allow ecf for mechanism to form but-2-ene from (c)

Allow E1 mechanism

M1 curly arrow from C−Br bond to the Br M2 curly arrow from lone pair on O of OH⁻ to a correct H on the correct C adjacent to C⁺ on the carbocation

M3 curly arrow from a correct C-H bond to a correct C-C bond

penalise M1 for any additional arrow(s) to/from the Br to/from anything else

penalise M2 for any additional arrow(s) on NaOH

(e) Z-but-2-ene **AND** E-but-2-ene

Allow 'cis'/'trans' and **B** and **C** either way round **Allow** E/Z but-2-ene, cis/trans but-2-ene

lack of/restricted/no (free) rotation around C=C/double bond

Allow C=C/double bond cannot rotate

M1 any correct 2D or 3D structure of butan-2-ol **Allow** C₂H₅

M2 must show at least one wedge bond and one dash bond in each structure from the chiral C and any bonds **in the plane** cannot be at 180° to each other

second structure could be drawn as mirror image of first **or** with same orientation of bonds and two groups swapped round

Allow ECF for second structure from incorrect first structure, providing molecule is chiral

(g) Silver iodide then silver bromide then silver chloride

Allow yellow then cream then white

Allow iodide/AgI then bromide/AgBr then chloride/AgCl

Allow iodo(butane) then bromo(butane) then chloro(butane)

Ignore iodine then bromine then chlorine

bond strength C-I < C-Br < C-CI

Ignore incorrect formulae

Allow carbon-halogen bond strength decreases down the group / from Cl to I

[15]